Arbeitsgruppe Bioimaging
print

Sprachumschaltung

Navigationspfad


Inhaltsbereich

Publikationen

Gehe direkt zu Bücher | Peer-Reviewed Articles | Peer-Reviewed Proceedings | Proceedings | Technical Reports

Bücher

  • Meyer-Baese, A., Schmid, V.J.: Pattern Recognition and Signal Analysis in Medical Imaging. Academic Press (2014). [Link]

nach oben


Aktuelle Working Paper

  • Happ, C., Greven, S., Schmid, V.J.: The Impact of Model Assumptions in Scalar-on-Image Regression.  arXiv:1707.02233
  • Mahaki, B., Mehrabi, Y., Kavousi, A., Schmid, V.J.: A Spatio-Temporal Multivariate Shared Component Model with an Application in Iran Cancer Data. arXiv:1707.06075

Peer-Reviewed Articles

2017

  • Amini Farsani, Z., Schmid, V.J.: Maximum Entropy ‎Approach ‎in‎ ‎Dynamic Contrast-Enhanced Magnetic Resonance ‎Imaging. Methods of Information in Medicine. Accepted for publication.
  • Schmid, V.J., Cremer, M., Cremer, T.: Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy. Methods. 123 (2017) 33–46. [DOI]
  • Happ C., Greven S.: Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains. Journal of the American Statistical Association (2017), to appear. [DOI]
  • Kühnl, A., Erk, A., Trenner, M., Salvermoser, M., Schmid, V., Eckstein, H.-H.: Incidence, treatment and mortality in patients with abdominal aortic aneurysms. Deutsches Aerzteblatt International 114:22–23 (2017) 391-398. [DOI]
  • Schmidt, P., Mühlau, M., Schmid, V.: Fitting large-scale structured additive regression models using Krylov subspace methods. Computational Statistics & Data Analysis. 105 (2017) 59–75. [DOI]

2016

  • Feilke, M., Bischl, B., Schmid, V.J., Gertheiss, J.: Boosting in Nonlinear Regression Models with an Application to DCE-MRI Data. Methods of Information in Medicine. 55:1 (2016) 31-41. [DOI]
  • Popken J., Schmid V.J., Strauss, A., Guengoer, T., Wolf, E., Zakhartchenko, T.: Stage-dependent remodeling of the nuclear envelope and lamina during rabbit early embryonic development. Journal of Reproduction and Development. 62:2 (2016) 127–135. [DOI]

2015

  • Feilke, M., Schneider, K., Schmid, V.J.: Bayesian mixed-effect models for the analysis of a series of FRAP images. Statistical Applications in Genetics and Molecular Biology. 14:1 (2015) 35-51. [DOI]
  • Popken J., Graf A., Krebs S., Blum H., Schmid V.J., Strauss, A., Guengoer, T., Zakhartchenko, T., Wolf, E., Cremer, T.: Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications. PLoS One 10:5 (2015) e0124619. [DOI]

2014

  • Sommer, J., Schmid, V.J.: Spatial two-tissue compartment model for dynamic contrast-enhanced magnetic resonance imaging. Journal of the Royal Statistical Society, Series C - Applied Statistics 63:5 (2014) 695-713. [DOI]
  • Sommer, J., Gertheiss, J., Schmid, V.J.: Spatially regularized estimation for the analysis of DCE-MRI data. Statistics in Medicine. 33:6 (2014) 1029-1041. [DOI]
  • Guzman Castillo, M., Gillespie, D., Allen, K., Bandosz, P., Schmid, V., Capewell, S., O'Flaherty, M.: Future declines of Coronary Heart Disease mortality in England and Wales could counter the burden of population ageing. PLOS One (2014) 9(6): e99482. [DOI]
  • Smeets, D., Markaki, Y., Schmid, V.J., Kraus, F., Tattermusch, A., Cerase, A., Sterr, M., Fiedler, S., Demmerle, J., Popken, J., Leonhardt, H., Brockdorff, N., Cremer, T., Schermelleh, L., Cremer, M.: Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics & Chromatin (2014) 7:8. [DOI]
  • Mahaki, B., Koshki, T.J., Schmid, V.J.: Trends of Cancer Incidence in Iran During 2004-2008: A Bayesian Space-Time Model. Asian Pacific Journal of Cancer Prevention. 15:4 (2014) 1557-1561. [Online]
  • Popken, J., Brero, A., Koehler, D., Schmid, V.J., Strauss, A., Wuensch, A., Guengoer, T., Graf, A., Krebs, S., Blum, H., Zakhartchenko, V., Wolf, E., Cremer, T.: Reprogramming of fibroblast nuclei in cloned bovine embryos is paralleled by major structural remodeling with both striking similarities and differences to nuclear phenotypes of embryos fertilized in vitro. Nucleus 5:6 (2014) 555-589. [DOI]

2013

  • Schmidt, P., Schmid, V., Gaser, C., Buck, D., Bührlen, S., Föschler, A., Mühlau, M.: Fully Bayesian inference for structural MRI: application to segmentation and statistical analysis of T2-hypointensities. PLOS One 8:7 (2013) e68196. [DOI]
  • Lehermeier, C., Wimmer, V., Albrecht, T., Auinger, H.-J., Gianola, D., Schmid, V., Schön, C.-C.: Sensitivity to Prior Specification in Bayesian Genome-based Prediction Models. Statistical Applications in Genetics and Molecular Biology 12:3 (2013) 375-391. [DOI]
  • Schneider, K., Fuchs, C., Dobay, A., Rottach, A., Qin, W., Álvarez-Castro, J., Nalaskowski, M., Schmid, V., Leonhardt, H., Schermelleh, L.,: Dissection of cell cycle dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Research 41:9 (2013) 4860-4876. [DOI]
  • Norousi, R., Wickles, S., Leidig, C., Tresch, A., Schmid, V.J., Beckmann, R., Becker, T.: Automatic post-picking using MAPPOS improves particle image detection from Cryo- EM micrographs. Journal of Structural Biology 182:2 (2013) 59-66. [DOI]

2012

  • Markaki, Y., Smeets, D., Fiedler, S., Schmid, V.J., Schermelleh, L., Cremer, T., Cremer, M.: The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture. BioEssays 34:5 (2012) 412-426. [DOI]
  • Copley, S.J., Giannarou, S., Schmid, V.J., Hansell, D.M., Wells, A.U., Yang, G.-Z.: Effect of Ageing on Lung Microstructure in vivo: Assessment with Densitometric and Textural Analysis of High resolution CT Data. Journal of Thoracic Imaging 27:6 (2012) 366-371. [DOI]
  • Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., Hoshi, M., Ilg, R., Schmid, V.J., Zimmer, C., Hemmer, B.: An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. Neuroimaging 59:4 (2012) 3774-3783. [DOI]

2011

  • Mahaki, B., Mehrabi, Y., Kavousi, A., Akbari, M.E., Waldhoer, T., Schmid, V.J., Yaseri, M.: Multivariate Disease Mapping of Seven Prevalent Cancers in Iran using a Shared Component Model. Asian Pacific Journal of Cancer Prevention 12:9 (2011), 2353-2358 [Online]
  • Seiler, D.M., Rouquette, J., Schmid, V.J., Strickfaden, H., Ottmanna, C., Drexler, G.A, Mazurek, B., Greubel, C., Hable, V., Dollinger, G., Cremer, T., Friedl, A.A.: Double-strand break-induced transcriptional silencing is associated with loss of tri-methylation at H3K4. Chromosome Research 19:7 (2011) 883-899. [DOI]
  • Whitcher, B., Schmid, V.J.: Quantitative Analysis of Dynamic Contrast-Enhanced and Diffusion-Weighted Magnetic Resonance Imaging for Oncology in R. Journal of Statistical Software 44:5 (2011). [Online]
  • Whitcher, B., Schmid, V.J., Thornton, A.: Working with the DICOM and NIfTI Data Standards in R. Journal of Statistical Software 44:6 (2011). [Online]
  • Schmid, V.J.: Voxel based adaptive spatio-temporal modelling of perfusion cardiovascular MRI. IEEE Transactions on Medical Imaging 30:7 (2011) 1305-1313. [DOI]
  • Staubach, C., Hoffmann, L., Schmid, V.J., Ziller, M., Tackmann, K., Conraths, F.J.: Bayesian space–time analysis of Echinococcus multilocularis-infections in foxes. Veterinary Parasitology 179:1-3 (2011) 77-83. [DOI]
  • Tabelow, K., Clayden, J.D., Lafaye de Micheaux, P., Polzehl, J., Schmid, V.J.,, Whitcher, B.: Image Analysis and Statistical Inference in Neuroimaging with R. NeuroImaging 55:4 (2011) 1686-1693. [DOI]
  • Whitcher, B., Schmid, V.J., Collins, D.J., Orton, M.R., Koh, D.-M., Diaz de Corcuera, I., Parera, M., del Campo, J.M., deSouza, N.M., Leach, M., Harrington, K., El-Hariry, I.A.: A Bayesian Hierarchical Model for Dynamic Contrast-Enhanced MRI: A Phase II Study in Advanced Squamous Cell Carcinoma of the Head and Neck. Magnetic Resonance Materials in Physics, Biology and Medicine 24:2 (2011) 85-96. [DOI]

2010

  • Schmid, V.J.: Kinetic Models for Cancer Imaging. In: Hamid R. Arabnia: Advances in Computational Biology. Heidelberg: Springer (2010). ISBN: 978-1-4419-5912-6. (Link)

2009

  • Schmid, V.J., Whitcher, B., Yang, G.Z.: Quantitative analysis of Dynamic contrast-enhanced MR images based on Bayesian P-Splines. IEEE Transactions on Medical Imaging 28 (2009) 789-798 [DOI]
  • Schmid, V.J., Whitcher, B., Padhani, A.R., Taylor, N.J., Yang, G.Z.: A Bayesian Hierarchical Model for the Analysis of a Longitudinal Dynamic Contrast-Enhanced MRI Cancer Study. Magnetic Resonance in Medicine 61 (2009) 163-174 [DOI]
  • Copley, S., Giannarou, S, Schmid, V., Hansell, DM., Yang, GZ.: Objective evaluation of lung morphology on thin-section CT using fractal dimension analysis: a comparative study between >75 and <55 year old individuals. In Journal of Thoracic Imaging 24, 3 (2009), August 2009

nach oben


Peer-reviewed Proceedings

2010

  • Kärcher, J., Schmid, V.J.: Two tissue compartment model in DCE-MRI: A Bayesian Approach. IEEE International Symposium on Biomedical Imaging. From Nano to Macro. 724-727.

2009

  • Schmid, V.J., Yang, G.Z.: Spatio-Temporal Modelling of First-Pass Perfusion Cardiovascular MRI. In: Olaf Dössel and Wolfgang C. Schlegel: World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings 25/IV. Heidelberg: Springer (2009) 45-48 [LINK]

nach oben


Proceedings

2014

  • Popken, J., Dahlhoff, M., Guengoer T., Schmid, V.J., Strauss, A., Cremer T., Zakhartchenko, V., Wolf, E.: Nuclear investigations adapt to rabbit early embryonic developement. Reproduction, Fertility and Development 27(1) 139.

2012

  • Sommer, J.C., Schmid, V.J.: Bayesian spatial regularization in nonlinear regression. Proceedings of Statistische Woche (2012)
  • Schmid, V.J.: Contextual Kinetics - Bayesian Modelling of Dynamic Imaging. Proceedings of the 11th Iranian Statistical Conference (2012)
  • Lehermeier, C., Wimmer, V. Albrecht, T., Auinger, H.-J., Schön, C.C. Schmid, V.J.: Sensitivity to Prior Specification in Bayesian Models for Genomic Prediction in Maize. 4th International Conference on Quantitative Genetics (2012)
  • Martina C. Feilke, Volker J. Schmid: Bayesian Analysis of FRAP-Images with Mixed-Effect Priors. 58. Biometrisches Kolloquium, Berlin (2012)

2011

  • Mohajer, M., Schmid, V.J., Braren, R., Noel, P.B., Englmeier, K.H.: How Heterogeneous is the Liver? A Cluster Analyse of DCE-MRI Time Series.NSS-MIC 2011
  • Schmid, V.J.: Adaptive Spatio-Temporal Modelling for Medical Imaging. Bayesian Inference for Latent Gaussian Models, Zurich

2010

  • Kärcher, J., Schmid, V.J.: Bayesian model selection in pharmacokinetic models. DAGStat 2010
  • Schmid, V.J.: Spatio-Temporal Modeling of First-Pass Perfusion Cardiovascular MRI. DAGStat 2010
  • Tabelow, K., Clayden, J.D., Lafaye de Micheaux P., Polzehl J., Schmid, V.J., Whitcher, B.: Image Analysis and Statistical Inference in Neuroimaging with R. 2010 Human Brain Mapping
  • Whitcher, B., Thornton, A., Schmid, V.J.: dcemri: R package for medical image analysis. DAGStat 2010
  • Kärcher, J., Schmid, V.J.: Defining adequate complexity of compartment models in DCE-MRI. ISMRM 2010

nach oben


Technical Reports (selected)

2016

  • Happ, C., Greven, S: Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains. arXiv:1509.02029
  • Norousi, R., Schmid, V.: Automatic 3D object detection of Proteins in Fluorescent labeled microscope images with spatial statistical analysis. arXiv:1601.01216v1

2012

2011

  • Ramin Norousi, Stephan Wickles, Thomas Becker, Roland Beckmann, Volker J. Schmid, Achim Tresch: Automatic post-picking improves particle image detection from Cryo-EM micrographs. arXiv:1112.3173.
  • Mojgan Mohajer, Karl-Hans Englmeier, Volker J. Schmid: A comparison of Gap statistic definitions with and without logarithm function. arXiv:1103.4767.

2010

  • Schmid, V.J.: Spatio-Temporal Modelling of Perfusion Cardiovascular MRI. Department of Statistics: Technical Reports, Nr. 77 (Link).
  • Gertheiss, J., Kärcher, J.C., Schmid, V.J.: Analysis of DCE-MRI Data using a Nonnegative Elastic Net. Department of Statistics: Technical Reports, Nr. 90 (Link).
  • Mojgan, M., Englmeier, K.H., Schmid, V.J.: A comparison of Gap statistic definitions with and without logarithm function. Department of Statistics: Technical Reports, Nr. 96 (Link).
  • Tabelow, K., Clayden, J.D., Lafaye de Micheaux, P., Polzehl, J., Schmid, V.J., Whitcher, B.: Image Analysis and Statistical Inference in Neuroimaging with R. WIAS Preprint, Nr. 1578. Weierstraß-Institut für angewandte Analysis und Stochastik (2010).